

Research Question

How do nitrogen rate and source impact tradeoffs in yield, thrips populations, disease incidence, and storage quality in muck onion production?

Spoiler: Low thrips numbers and limited bacterial rot in the two site-years of our experiment meant we were not able to evaluate insect-disease-nitrogen interactions.

Methods

- Two-year on-farm experiment on muck soil in Hamilton, MI
- Onion varieties: 'Aldrin' (2017) and 'Champ' (2018)

Topdress N Rate Treatments

Trt	Topdress N	Total N ^a	Source/Timing			
1	0	90	Urea			
2	50	140	Urea			
3	100	190	Urea			
4	150	240	Urea			
^a All IbN app	treatments rece /acre preplant. lied topdress ir	eived approx Remainder o n early June.	imately 90 (88.2) of total N rates			

Trt	Topdress N	Total N ^a	Source/Timing
	lb N	l ac ⁻¹	
3	100	190	Urea
5	100	190	ESN
6	100	190	Urea/ESN Blend (50/50)
7	100	190	Urea (Split Topdress ^b)
^a All prej earl	treatments rece plant. Remaind	eived approx er of total N	imately 90 (88.2) lbN/acre ates applied topdress in

Data Collection: Yield by size category, storage quality, soil and tissue N content during the season

Slow release N at topdress did not affect yield

Higher N rates increased sproutin	ng in 2017
	2017

Onion Quality Attributes Following Storage - 2017							
Topdress N Rate	Rotten Bulbs	Sprouting Bulbs	Bulb Firmness	Bulb Moisture			
Urea		· % ——— .	lb in ⁻²	%			
0	0.9	3.5 a	2.18	93.2			
50	0.8	5.3 a	2.10	93.2			
100	0.3	10.9 b	2.13	93.0			
150	0.8	11.3 b	2.12	92.9			
Significance	NS	0.02	NS	NS			

- Stored in a cooler at 50°F prior to quality evaluations in early March
- No impact of N source/timing on storage quality
- 2018 storage quality measurements not completed yet

Summary

• MSU Nitrogen Recommendation for Onions on Organic Soils:

≻140 lb N/ac

- Research supports this is sufficient, and may often be significantly more than is needed to optimize yields
- Evidence that higher N rates can increase severity of bacterial bulb rot and storability (sprouting)
- Can you reduce your N rates?

